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Abstract

A class of asynchronous iterative methods is presente. ..r solving a system of
equations. Existing iterative methods are identified in terms of asynchronous iterations,
and new schemes are introduced corresponding to a parsllsl implementation on a
multiprocessor system with no synchronization between cooperating processes. A
sufficient condition is given to guarantee the convergence of any asynchronous
iterations, and results are extended to include iterative methods with memory.
Asynchronous iterative methods are then evalusted from a computstional point of
view, and bounds are derived for the efficiency. The bounds are compered with actual
measurements obtained by running verious asynchronous iterations on a multiprocessor,
and the experimental results show clearly the advantage of purely asynchronous iterative
methods.
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1 -~ Introduction

In this paper we investigate the fixed point problem for an operator F from R"
into itself: we want to find a vector z in R™ which satisfies the system of equations

represented by
% = F(x). (1.1)

In [1], Chazan and Miranker introduced the chaotic relaxation scheme, a class of
iterative methods for solving equation (1.1) where F is a linear operator given by
F(x) = Ax + b. They showed that iterations defined by a chaotic relaxation scheme
converge to the solution of equation (1.1) it and only if p(IAI)é 1. (It M is a real
inxn. matrix, p(M) denotes its spectral radius and |M| denotes the non-negative nxn matrix

i

' obtained by replacing the elements of M by their absolute values.)

! In [4), Miellou generalized the chaotic relaxation scheme to include non-linear
_operators and obtained convergence results similar to those of (1] in the case of

contracting operators (see, for example, (5, p. 433]).

In both [1] and [4], the motivation of detining chaotic relaxation is to account for

the parallel implementation of iterative methods on a multiprocessor system so as to
reduce communication and synchronization between the cooperating processes. This
reduction is obtained by not forcing the processes to follow a predetermined sequence of
computations, but simply by allowing a process, when starting the evaluation of a new
!itente, to choose dynamically not only the components to be evaluated but also the

“values of the previous iterates used in the evaluation.

The definition of the chaotic relaxation scheme does not, however, allow for a
completely a'rbitrary choice of the antecedent values used in the evaluation of an iterate.
The main restriction is that there must exist a fized positive integer s such that, in
carrying out the evaluation of the i-th iterate, a process cannot make use of any value of
; the components of the j-th iterate if j < i-s. For example, if, for some reason (due to the
. computation itself or to the mutiprocessor system), a process may take an arbitrarily long
time to relax the components it is evaluating, the other processes may have to wait untit
_the evaluation by the first process is completed. This requires repeated checking before
each step of the iteration and some form of synchronization. This is exactly what we
want to avoid because the use of synchronization primitives is time consuming and also
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because synchronization forces some of the processors to be idle or implies the
switching of context. This creates an unnecessary overhead, reduces the parallelism, and
decreases the maximum speed-up we expect to achieve in using a multiprocessor.

In the next section we introduce the class of asynchronous iterative methods which
does not impose the restriction mentioned above, and we show that existing iterative
msthods (and, in particular, the chaotic relaxation) can be represented as specisl cases of
asynchronous iterations. Section 3 gives the definition and reviews some properties of
contracting operators. Then the theorem of section 4 generslizes the results on the
convergence of the chaotic relaxation obtained by Chazan and Mirsnker [1] and by
Miellou [4]. This result is further extended, in section 5, to include iterative methods
with memory. In section 6, we consider the complexity of asynchronous iterative
methods, and we derive bounds on the efficiency. These bounds are then cou‘pnrod with
actual measurements of asynchronous iterations. The experimental results, presented in
section 7, show a considerable advantage for iterations making no use of synchronization,
and this constitutes the best argument for using asynchronous iterative methods.
Possible extensions of the results are discussed in section 9, and concluding remarks are
presented in the last section.

2 - The class of asynchronous iterative methods.

The following notations will be used throughout the paper. If = is a vector of R"™,
its components will be dom;tod by z, i«1,..,n To avoid confusion, a sequence of
vectors of R™® will be denoted by =(j), j = 0, 1, ... If F is an operator of R™ into itself,
F(x) will also be represented in components by f;(x) or by fi(xs, w, 8p), é = 1, ., n. We

denote by N the set of all non-negative integers.

2.1 = Definition of asynchronous iterative methods

Definition 1:
Let F be an operator from R™ to RR. An asynchronous iteration corresponding
to the operator F and starting with a given vector £(0) is a sequence s(j), j = 0, 1, ..,
of vectors of R” defined recursively by:
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where 7 = {Jj |j=1,2 ..} is a sequence of non-empty subsets of {{, .., n} and
A m{ glj) o, 8,00 ) Jj=1,2 .} is asequence of elements in N™.

In addition, # and 4 are subject to the following conditions:
foreachéi=1,..,n
(a) s;(j)sj-1,j=1,2,.,
(b) s,(j), considered as a function of j, tends to infinity as j tends to infinity,

{c) i occurs infinitely many often in the sets J o j=1,2, ..

An asynchronous iteration corresponding to F, starting with 2(0) and defined by
J and 4 will be denoted by (F,2(0),2,4). B

An asynchronous iteration (F,x(0),7,4) may be thought of as corresponding to th§
following sequence of computations on an asynchronous multiprocessor.

Assume we have a pool of processors available. Let ¢t o j=1,2,., be an
increasing sequence of time instants. At time ¢t j processor P is idle and is assigned to
the evaluation of the iterate x(j), z(j) ditfers from z(j-1) by the set of components
{z1iCJ j} and P starts computing these components using values of components
known from previous iterates, namely the r-th component of the s.(j)-th iterate, for
r=1,. ,n The choice of the components may be guided by any criterion, and, in
particular, a natural criterion is to pick up the most recently available values of the
components. This scheme does need any synchronization between the processes. At
some time tg, later on (k > j), P will finish its computations and will be assigned to a new

evaluation: z(k).

The use of asynchronous iterative methods is: obviously not restricted to
multiﬁroccssor systems, and the scheme is also well suited for execution on a network of
computers, in particular, when the communication between elements of the network is not
too expensive as opposed to the computation itself.

We notice that, in the evaluation of an iterate, nothing is imposed on the use of the
values of the previous iterates. The only thing required, by condition (b) of the
definition, is that, eventually, the values of an early iterate cannot be used any more in
turther evaluations and more and more recent values of the conponénu have to be used
instead. On a multiprocessor, this condition can be satisfied as long as no processor

crashes (and eventually completes its computation).

i
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Condition (a) of the definition states the fact that only components of previous
‘iterates can be used in the evaluation of a new iterate. Condition (c) guarantees that no
{ component be abandoned forever.

I t

i 2.2 - Examples and particular cases of asynchronous iterations

Classical iterative methods: point or block Jacobi, Gauss-Seidel, etc., as well as
| others introduced more recently: chaotic relaxation scheme [1], periodic chaotic scheme
1 [2); itération chaotique & retards [8), itération chaotiqus série-paralidle [6], cen all be seen

': as particular cases of asynchronous iterations.

' For example, the point-Jacobi method defined on the operator F with the initial
approximation z(0) can be represented by the asynchronous iteration (F,2(0),4,4) where
J and 4 are defined by:
Jj-{l,...,n} for j=1,2, .,
s;(j)mj-1 for j=1,2,. and é=l, ., 0.

The same point-Jacobi method can equivalently be represented by the
’ asynchronous iteration where # and 4 are defined by:
: Jy= {1+ Gt modm)) for jut2.,
sfj)mn|(j-1)/n} tor j=1,2,.. and i=), .y

| Although those two representations correspond to the same point-Jacobi method,
ithey differ by the implicit information they contsin about the decomposition of the
fcomputationa. In the first case, all components are evaluated at once and this,
gprosumably. will be done by one computational process. In the second case, however,
' each component is evaluated separately, and up to n processes can be used to perform
the evaluations. Between the two extreme representations of the point-Jacobi method, in
terms of asynchronous iterations, several others can be proposed, each of which can be
interpreted in terms of decomposition into computational processes and in terms of

implementation by concurrent processes.

The iterative method proposed by Robert, Charnay and Musy (itération chaotique
série-paralldls [6]) can be obtained as a special case of an asynchronous iterstion in
which s,(j) = j-1 (for all i= 1, ..,n and j= 1,2, .). This corresponds to a strictly
sequential computation of sets of components. The choice of the components within a set
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is arbitrary and the calculations of their values can be done simultaneously but the
evaluation of a new set of components cannot be started before all components of the
previous set have been computed and their new values relaxed. The goal of their
research was to show that, for example, in the iterative solution of linear systems
resulting from the application of the method of finite differences to partial differential
equations, it is possible to concentrate the computations more on those points of the grid
where the convergence is slower than on other nodes. This is not the case with ordinary
iterative methods for which any component is iterated as msny times as any other

component.

Chazan and Miranker [1] have proposed a chaotic relaxation scheme to solve a
linear system. Our definition of an asynchronous iterative method is very similar to the
definition they give for a chaotic iterative scheme. Our definition, however, does not
have the restriction they impose, namely (with our notations) that j-s,(j) has to be
uniformly bounded by some fixed integer, say s, (for all i = 1, ..., n and j = 1, 2,..). This
means that, in the evaluation of the j-th iterate, only values of the components of the s
preceding iterates can be used. From a practical point of view, in an actual
implementation of such scheme on an asynchronous multiprocessor, this requires a strong
assumption about the relative speeds of the different processors, about the scheduling

ipoucy of the supervisory system, and about the implementation of the computations in
‘'general. There is no way to guarantee this assumption without some form of
| synchronization (which is precisely what we want to avoid).

| Although all chaotic relaxation methods (as presented in [1] or [4]) can be
| identified as asynchronous iterations, the converse is not true as is illustrated by the
;followtng example. Let F be an operator from R? into itself. Assume we have two
. processes P; and P, attached to the evaluations of the first and second components,
; respectively. To avoid synchronization, the processes always use in an evalustion the
values of the components currently available at the begining of the computation. If we
“assume that it slways takes 1 unit of time for P; to perform the evaluation of »; and it
takes k units of time for P, to perform the k-th evalustion of x5 then the quantity
'j - 85(j) grows as V7 which is unbounded. This iteration is a legitimate asynchronous
iteration, it is not, however, allowed in the setting of (1] and [4]
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g - Contracting operators

In the next section we shall give a sufficient condition on the operator F for the
convergence of any asynchronous iteration. Needed definitions are given in this section.

3.1 - Lipchitzian and contracting operators

Contracting operators to be defined below correspond to P-contractions in
[5, p. 433), and the notion was used to obtained the results of [4] and (6l

Definition 2:
An operator F from R” to R” is a Lipchitzian operator on a subset D of R”" if

there exists a non-negative nxn matrix A such that:

|F(x)-F(y)} < Alz-y), Yz,y€D, (3.1)
where, it z is a vector of R" with components z;, i = 1, ..., n, |z| denotes the vector
with components |2;], i = I, ..., n, and the inequality holds for every component.

The matrix A will be called a Lipchitzian matriz for the operator F. 5

From this definition we can see that any Lipchitzian operator is continuous and, in
fact, uniformly continuous on D. However this definition is too broad and, in particular,
we are not guaranteed of the existence and the uniqueness of a fixed point as is shown
by the following example. Take the operator F from R to R defined by F(z) = v xz'vc},

this operator is Lipchitzian on R because

IF)-Fly)) = -y Ny 22002 + /y20ad)) 5 le=3), V2, 7 ER.
However, the equation z = /;7:; (corresponding to a = 1) has no solution. On the other
hand, the equation x « ||, (corresponding to a = 0) has an infinity of solutions, and, in

fact, a continuum of sotutions.

We will, therefore, restrict ourselves to the following class of operators.

Definition 3:
An operator F from R™ to R® is a contracting operator on a subset D of R if it
is a Lipchitzian operator on D with a Lipchitzian matrix A such that p(A) < I (where

p(A) is the spectral radius of A).

The matrix A will be called a contracting matriz for the operator F. I
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The fact that, unlike Lipchitzian operators, contracting operators are guaranteed to
.have a unique fixed point in the subset D can be easily derived from the definition. In
; addition, if we assume, for example, that D is closed and that F(D)<c D, we are also
guaranteed of the existence of a fixed point in the subset D. A proof can be found in

(S, pp. 433-434]

{ 3.2 - Examples of contracting operators

We could have considered a more general definition for asynchronous iterative
methods by i;ntroducing a relaxation factor o > 0. This would simply consist of replacing,
'in equat'tonse (2.1), the operator F by the operator F,, = oF + (1-0)E, where E is the
identity operator of R”®. It follows that
] IF (@)-F ()| < olF(x)-F(y)| + (1~0)|z-¥] ,

:and, if F is a contracting operator with a contracting matrix A, F_ is a Lipchitzian
:oparator with the Lipchitzian matrix A, = A + [I-0|l. The matrix A being non-negative
' we have p(A,) = op(A) + |1-0|, and, if we choose

0 <o < 2/[1+p(A)] ,
F,, is also a contracting operator. In particular, as long as condition (3.2) is satisfied, the

(3.2)

results of the next section also apply to asynchronous iterative methods with relaxation.

Let F be a linear operator given by F(z) = Ax + b, where A is an nxn matrix and &
is a vector of R™ We observe that F is a contracting operator if and only if p(lA|) < 1.
Therefore, in the case of linear operators, the notion of contracting operators coincides
with the property stated by Chazan and Miranker for their convergence result (1], and

their result will appear as a particular case of the theorem of the next section.

If we now consider a linear system of equations derived from a linear elliptic
differential equation by the method of finite differences, we note that the system is
represented by Ax « b, where b is a vector of R® obtained from the boundary conditions
and A is an nxn M matrix (see, for example, [7, p. 85)). Therefore the system can be
written into the form of equation (1.1) in which F is the contracting operator given by
Fx) = -01A)z + D"‘b, where D is the matrix composed of the diagonal elements of A
This example shows, in the case of linear operators, the importance of contracting

operators.

On the other hand, non-linear contracting operators, too, constitute a very
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important class. A first example is directly derived from the previous one. Elliptic
partial differential equations, obtained by the addition of a small non-linear perturbation
to a linear partial differential equation, can also be shown to give rise to (non-linear)

contracting operators.

More important, if G is a non-linear operator from R” into itself with the simple
root {, superlinear iterative methods have been devised to find the root & of G, provided
;that an initial approximation 2(0) sufficiently close to § is already known. For example,
Newton iterative method generates the sequence of iterates
2(is1) = F(xG)) = 2G) - [C@GIT1CEGE), for i=0,1, ..,

which converges quadratically to the root ¢ of G. In this particular example, we can
'eastly derive, under usual assumptions (for example, C’ satistfies some Lipchitz condition
!m a neighbor of ), that the Newton operator F corresponding to G is a contracting
ioperator
i In fact this result is very general. Let F be an operator from R" into itself with a
|fixed point ¥ If we assume that F is continuously differentiable in the set
jD,. = { x| llz~Zll <r} and that the derivative F* vanishes at § and satisfies a Lipchitz
 condition

' i )-Fel < Miz-yll, Y2, €0,,

then it can be easily shown that
| WFG)-Fiy)l < 2Mrliz-3ll , ¥ 2,3 € D,.

Therefore, by choosing the vector norm |izf| = |z(| + .. + |2,| (which only changes the
_constant M), the operator F is certainly a Lipchitzian operator with the Lipchitzian matrix

A=[a; j] where a; j= 2Mr, for i, j = 1, .., n. In particular, if we know a sufficiently close

approximation to the fixed point ¥ (i e, if r is small enough), the operator F is also a
;contracting c%perator. This shows that the class of contracting operators contains, under
' weak condlti.'ons. all iterative functions occurring in the classical superlinear iterative
_methods.

|4 - Convergence theorem

f
!
|
i
1
|
! Before stating a sufficient condition ensuring the convergence of an asynchronous

!iteration, we give a characterization of a non-negative matrix with spectral radius less
than unity. An algebraic proof of this characterization can be found in [1, p. 218), &
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shorter proof, based on the continuity of the spectral radius of a matrix as a function of
its coefficients, is given below.

Lemma:
Let A be a non-negative square matrix. Then p(A) <! if and only it there
exists a positive scalar o and a positive vector v such that:
Avsov and 0<!. (4.1)
Proof:
We first assume that (4.1) holds. In this case we note that lAll, < @ < 1, where the
matrix norm |L|l,, is induced by the vector norm defined by:
zll, = maz{ |z;l/v; 1 i=1t, .0},

Therefore the matrix A is convergent which implies p(4) < I (see, for example, (7, p. 13)).

Now assume that p(A) < 1. Let t be a non-negative scalar and A, be the matrix
obtained by adding t to all null coefficients of A. Clearly, for any positive vector z, we
have Az < Ayxz. On the other hand, p(A,) is a continuous function of ¢. In particular, since
Ag = A and p(A) < 1, we can always choose t > 0 small enough so that P(A) < 1 (in fact,
we also have p(A) < p(A,)). Then let o = p(A,). As A, > 0, from Perron’s theorem (see, for
example, [7, p. 30)), there exists a positive eigenvector v corresponding to the eigenvalue
o. The positive scalar o and the positive vector v verify Av < Aw = ov with © < 1. And

this completes the proof. B

This proof shows, in particular, that 2 p(A). But, we also see easily that the

positive scalar o can be chosen arbitrarily close to pfA)

We are now able to state a sufficient condition on the operator F for the
convergence of any asynchronous iteration corresponding to F. This result is similar to
the results obtained for the convergence of a chaotic iteration by Chazan and Miranker
[1] and by Miellou [4] The proof given here follows the same idea as in

( [1, pp. 217-218]), it does not depend, however, on the assumption that (with the notation
~of definition 1) j-s;(j) is uniformly bounded by a fixed integer, for any j =0, !, ... and

lewl,u,n

Theorem 1:

If F is a contracting operator on a closed subset O of R" and it F(D) c D, then
any asynchronous iteration (F,2(0),#,4) corresponding to F and starting with a vector
2(0) in D converges to the unique fixed point of F in D.

“ -




R A B SR E A SIS O SN S

i

Proof:

Let & be the unique fixed point of F. By considering the operator F(z+§)-§, we may
assume, w«thout loss of generality, that § = F(§) = 0. By setting y = § in equation (3. 1),
the Lipchitz condition on the operator F gives:

IF@)| s Als|, Y= €D.

, _
; Let A be a contracting matrix for F and let © and ¥ be as defined in the lemma.
| Since v is a positive vector, for any sterting vector s(0) we can find a positive scalar o

' such that |z(0)] < ow.

We wil.lshowtmnmuﬂ-momdw]’p-ml,.ﬂ.smhtmt
the sequence of iterates of (F,»{0).3,4) salishes:
j2()] s aPy for j2 jp. 4.2)
As 0 <o < l,th'\sshowsMa(l)*Onj*-ﬁNﬁumthoMom.

We first show that inequality (4.2) holds for p = 0 if we choose jj = 0. That is, for

j 2 0 we have:
J2(j)) s eev . (4.3)

From the choice of o, inequality (4.3) is true for j = 0. Assume, for induction, that
it is true for 0< j<k and consider z(k) Let z denote the vector with components
z; = z(s;(k)), for i =1, .., n From definition 1, the components of xk) are given either
by z;k) = z;tk-1) if i £ Jp, in which case J2,(k)) = |z, (k-1)| < vy, or by z;k) = fifz) it
i € Jy. In this latter case, we note that, as s;(k) < k (condition (a) of definition 1), we
have:

|F(z)] < Alz| < Ay < v
and in particular:
|2;0k)) = |fi(2)] s ocoov;
As 0 < o < 1, in this case too we obtain [z;(k)| < a; and (4.3) is proved by induction,

which shows that (4.2) is true for p = 0 if we choose jj = 0.

Now assume that jp has been found and that inequality (4.2) holds for 0 < p <q. We
want to find jq and show that (4.2) also holds for p = g.

First define r by
r-m.in{kl lek S"'(]')qu_l. for i.-l,...,n}.
We see, from condition (b) of definition 1, that this number exists, and we note that, from
condition (a), we have r > jq,_ 1 Which shows, in particular, that |2(r)] < w1y,
« 10 -
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Then take j 2 r and consider the components of x(j). As above, let z be the vector
with components z; = z,(s,(j)). From the choice of r, we have s;(j) 2 j_g, for i = I, .., n,
. and this shows that |z| < w9y, In particular, in using the contracting property of the
ioporator F we obtain: i
IF(2)) < Alz) < w09 1A < wov .
i This inequality shows that, if i € J p z,(j) satisfies: ‘ :
E . ; l2,()) = 1f(2)] s ey, . | 1
1 On the other hand, if i € J j the i-th component is not modified. Therefore, as soon as the
i~-th component is updated between the r-th and the j-th iteration we have:

Iz‘(;)l < OEOqU‘: . (4.4)

Now, define jq as:

A

jq-m.in{jljzr and {1,...,n}-Jru...qu}
(this number exists by condition (c) of definition 1), then for any j 2 jq every component
is updated at least once between the r-th and the j-th iteration and therefore inequality

1(4.4) holds for i=1,.. , n. This shows that inequality (4.2) holds for p = g and this

proves the theorem. [ |

'8 =~ The class of asynchronous iterative methods with memory

The idea behind the definition of asynchronous iterations, as presented in section
2, is to allow, in the evaluation of F(z), different (and independent) procésses to compute
' different subsets of the components. This corresponds to a natural decomposition for the
evaluation of F(x) when the operator F is known explicitely by the set of functions
fgs = s fp. This is not, however, always so. For example, if F is the Newton operator
'corresponding to a non-linear operator G, i. e.: F(z) = z ~ [C'(z)]'IO(z). usually only the
operator G is given and the operator F is not known explicitely. In this particular case,
when two processors are available, a more natural decomposition, as proposed by Kung
in [3), is to have one process computing the value of G’ while the other process uses this
value for the evaluation of F. More precisely, if z and y are two global variables

containing the current values of the iterate and of the reciprocal of the derivative of G,

respectively, the two processes correspond to the two following programs.
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Process 1: while (termination criterion not satisfied)
do % « 2z - yxG(z).

Process 2: while (termination criterion not satisfied)
do y « [C@)] L.

Starting with the initial values z(0) and [G’(z(O))]" for z and y respectively, the
two processes execute their programs asynchronously and use for x and y whatever
values are currently available when needed. They implicitely define the sequence of
iterates x(j), for j = 0, 1, .., through formulas of the form:

2(j) = H{x(j-1),z(k J-)] , with k j s j1, (5.1)
where .

Hz,y) = z - [C°G)]1CG) .
This iteration, however, is not allowed in the setting of definition 1, because, in equation
(5.1), 2(j) is defined in terms of two previous iterates. And this motivates the need for a

generalization of the class of asynchronous iterative methods.

5.1 = Asynchronous iteration with memory

A generalization to definition 1 can be obtained by noting that, if, for j = 2, 3, .., it
l happens that & | o j-2 in equation (5.1), this equation detines a sequence of iterates which
‘corresponds exactly to the sequence generated by an iterative method with one memory.

EThi.s remark suggests the following generalization for the problem stated in equation

i(1.1).
i
i Given an operator F from [R"]™ into R", the problem is now to find a vector § in

R™ such that:
- Lt 1 ,.m
¥ = lim (x 145,....::’"-05} Flxt,..,2™). (5.2)
, The vector § will still be called a fized point for the operator F.
In very much the same way as we introduced the class of asynchronous iterative

methods to solve equation (1.1), we now introduce the class of asynchronous iterative

methods with memory to solve ectation (5.2).

i

' Definition 4:
Let £ be an operator from [R™]™ into R™ An asynchronous iteration with
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memory corresponding to the operator F and starting with a given set of vectors
2(0), .., x(m-1) is a sequence x(j), j=0,1,., of vectors of R™ defined for
J = m, m+{, .. by:
2 = { oA s g
e ) 8 i€t
where 2, 1 sr<m, is the vector with components z; = ;(3/(j)), 1séi<sn As in
definition 1, 2={J Ji | j=m, msl, ..} is a sequence of non-empty subsets of
{1, ..., n} which correspond to the subsets of components evaluated at each step of
the iteration. But the sequence 4 is now to be replaced by:
A = { Gyl iy 5,100 826D, oy 8, | = my mot, o b,
a sequence of elements in [IN?]™. In addition, while condition (c) of definition 1
remains the same, conditions (a) and (c) now become:
foreachi=1,..,n
(@) max{s/(j)|1srsm}s j-i, for j=m msl, ..,
(b) min{ s;"(j) | 1 sr < m}s j~I tends to infinity as j tends to infinity.

An asynchronous iteration with memory corresponding to F, starting with a set

X of m vectors and defined with 7 and 6 will be denoted by (F,X,#,4). [ |

For practical reasons (e. g, stability in the implementation on a computer), we
might want to have the additional condition that the vectors z‘, wy 2™ are all distinct.
But this restriction is not essential for our purpose here if we assume, for example, that
the operator F is defined by continuity when two or more vectors are identical. This will

be the case with the class of operators we will consider.

Now, in order to obtain, for asynchronous iterations with memory, a convergence
result similar to the result stated in theorem 1, we need to generalize the notion of

contracting operato:s to operators from [R"]™ into R"™.

In the remainder of the section, we will use the following notation. It {z‘. w 2™}
is & set of vectors in R®, z = max[z), .., #™] denotes the vector in R™ with components

z; = max{ z{' |1srsm) A natural generalization to the notion of contracting

o

operators is given in the following.

Definition 5:
An operator F from [R®}™ into R" is an m-contracting operator on a subset D

-13 -
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of R™ it there exists a non-negative nxn matrix A with spectral radius less than unity
satisfying, for all 1, ., ™, 4!, ., y™ in D,
IFe!, .., 2™) - FOA, .., Y™ < Amaxla!-y!|, ., |2™-y™|].

The matrix A will be called a contracting matrix for the operator F. B

When m = 1, the preceding definition corresponds exactly to definition 3. And
m-contracting operators have all the properties we have already mentioned for
}contractlng operators. In particular, it is clear from the definition that m-contracting
‘ operators are continuous and, in fact, uniformly conti.nubus on D™, The unlquenoss of a
fixed point in D is also easily derived. In addition, if we assume that D is a closed
| subset of R" satisfying F(D™) c D, then we are guaranteed of the existence of a fixed
point in D: the fixed point is, for example, obtained as the limit of the sequence x()),
1 J =0, 1, .., defined by:
' 2(j) = Fx(j~1), . 2(j-m)), j=m, m+l, ..,

| which is independent of the set of starting vectors 2(0), .., z(m-1) in D.

: We are now able to state the analogue ot theorem 1 for m-contracting operators in

“the following.

Theorem 2:

If £ is an m-contracting operator on a closed subset D of R" satisfying
F(D™)< D, then any asynchronous iteration with memory corresponding to the
operator F and starting with an arbitrary set of m vectors in D converges to the
unique fixed point of F in D.
Proof:
With slight modifications, the proof of this theorem is identical to the proot of
theorem 1. : &

5.2 = Examples of asynchronous iterations with memory

In the beginning of this section, we considered the Asynchronous Newton's method
to find the simple root { of a non-linear operator G. This method led to the sequence of
iterates generated by the asynchronous iteration with memory (H,{x(0),2(0)},#,4), where:

JJ' w{l,.,n} ftor j=23..,
sl w ity s2mk; for ju2,3,. and im1,.yn.
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In addition, as the operator H can easily be shown to be a 2-contracting operator
(assuming, for example, some Lipchitz condition for the derivative of G in a small
neighbor of the root ), we see that the sequence defined by equation (5.1) converges to
L, provided that & j tends to infinity with j (which simply states the fact that the

processes eventually complete each step of their computations).

Let £ be an operator from [R?]™ into R™, and let » be a positive scalar. Consider
the operator F,, from [R™*)™*! into R" obtained {. m the operator F by the introduction
of the relaxation factor ©, and defined as

F0, 21, ., x™) = (1-0)x0 + oF &, ..., 2™).

We first note that both F and F . have the same fixed points (if any). We also note that,
“if F is an m-contracting operator on some subset D of R™ with the contracting matrix A,
| then, for all 20, 21, .., 2™, 50, 51, .., y™ in D, the operator F_, satisfies:

' F @0, ., x™)-F, (50, .., y™)] < [1-01120-90] + oIF (), .., 2™)-FlyL, .., y™)]

< 11-01129-y9) + oAmax{|z!-y1}, .., |2™-y™|]
} < (-0l + oAImax[|z0-50), lz!-5!], .., l2™-y™],
and, provided that 0 < o < 2/[1+p(A)], F, is an (m+1)-contracting operator on D with the

contracting matrix A = |1-0]l + 0A. This reestablishes, in a more general setting, the

(A
' result mentioned in section 3.2 for asynchronous iterative methods with relaxation.

Many more examples of asynchronous iterations with memory can be given and, in
particular, all classical iterative method with memory can be expressed in this way. In
addition, all usual super-linear iterative methods with m memories can be shown (under
weak conditions) to correspond to some (m+!)-contracting operator, therefore ensuring

| the convergence of any ésynchronous iterations corresponding to this operator.

6 -~ On the complexity of asynchronous iterations
Let F be an operator from R™ to itself with a fixed-point § and satisfying the
. assumptions of theorem 1. We now investigate some measures of efficiency for the
t convergence of the asynchronous iteration (F,2(0),#,4) toward the fixed-point { of F.

|
' The constructive proof of the theorem already provides us with bounds for the

!orror vector x(j) - §. And, in fact, if F is a contracting operator with the contracting
matrix A, we note that an estimate of the error committed with the asynchronous iteration
(F,2(0),4,4) is directly obtainable from the asynchronous iteration (A |2(0)-f|,7,4). This

I



estimate is used in this section to derive bounds for the efficiency of asynchronous
iterations corresponding to contracting operators. However, since (A,|x(0)-§|.7,4) cen
only reflect linear convergence, this estimate is certainly not adequate to deal with all
asynchronous iterations, and, in section 8, using an example, we present an analysis for

an asynchronous iteration with super-linear convergence.

For convenience, we only consider the convergence in norm of the error vector
2(j)- ¢. By choosing, for example, the norm |zl = max{ |%;| |i=1,.,n}, this
corresponds to the worst possible case for the convergence of the components.

To measure the linear convergence of the sequence x(j), j = 0, 1, .., toward its limit
£, we consider the following complexity measures often referred to in the literature. The
rate of convergence of the sequence is defined as:

R = lim inf ; [(-logllz(;)-ﬂl)/j]
In addition, if ¢ j is the cost associated with the evaluations of the first j iterates,
x(1), ..., 2(j), we define the efficiency of the sequence by:

E = lim inf oo ((-loglz(;)—fl)/c ].
If all logarithms are taken to the base 10, 1/R measures the asymptotic number oi steps
required to divide the error by a factor of 10, whereas I/E measures the corresponding
cost. We note that, if ¢ /j tends to some finite limit ¢ (which corresponds to the average
cost per step), then the efficiency is simply given by E = R/e.

The costs ¢ 7 j=1,2, ., can be chosen according to any convenient measure. In
our case, we consider the cost 1o correspond either to the number of evaluations of the
operator F, or to the time to perform the evaluations. In the former case, it each
component is equally as hard to compute, the cost can be directly evaluated from the
sequence 7 by considering

cj=- (OJg) ¢+ lJ,-l)/n > (6.1)
;whcre \J jl is the cardinality of the set J ) i. e.,, the number of components evaluated at
' the j~th step of the iteration. In the latter case, the cost is better suited to deal with
!plnllal algorithms, and can be evaluated through the classical tools of queueing theory.
;Whon it is necessary to indicate which cost measure is used in the evaluation of the
efficiency, we use the notations £ if the cost is measured in number of evaluations ot F,
lll\d E, it the cost is measured by the time needed to perform (sequentially) one
“evaluation of F.

. -
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6.1 - General bounds

: We re?urn to the proof of theorem 1, and we use the same notations. The proof
"simply consists of constructing an increasing sequence of indices jp, p=01,..,

satisfying
; Hx(i) - &l < woP for izips
. where the positive constant o can be taken to be o = ||z(j)-gll. From the construction of

' this sequence we note that
! IP‘,.IP”‘P’t for p=0,1,..

where o and t, are integers chosen to sahsly' (1) starting with the index /porp. all
evaluations of derates do not make any more use of values of components corresponding
to iterates with indices smaller than jp; and (2) all components are evaluated at least

once between the (/por )-th and the (/pv +t )-th iterates.

Now let
Pj= sup{ p | rp*te*-*rp-g*tp-g S j} for j=0,1,...
Then, if we know 'n and tp for p = 0, 1, .., we can deduce a bound on ||z(j)-§|| since

(6.2)

Nz(j)-¥l < wo’/ for Jj=0,1, .,
which shows that the sequence x(j), j = 0, 1, .., converges at least as fast as the sequence
opj, Jj =0, 1, .., with a rate of convergence R such that

R 2 - [lim inf oo (p j/j)] logo .
And, if ¢ j is the cost associated with the evaluations of the first j iterates, we have the
following bound for the efficiency:

E 2 - [lim inf o (p j/c j)] logo .
In addition, as was noticed earlier, if A is a contracting matrix for the operator F, © can
be chosen arbitrarily close to p(A). This shows that in the bounds we have just obtained

we can simply replace o by p(A), and this yields the following.

Theorem 3:
Let F satisty the condition of theorem 1, and let A be a contracting matrix for

the operator F. Then the asynchronous iteration (F,2(0),#,4) converges to the fixed
point of F with a rate of convergence
R 2 - [lim inf e (p j/j)]locp(/l) b
and an efficiency
E 2 - [lim inf JAoo (p j/e I)]logp(A) ’
where the sequence p j is defined from 7 and 4 by equation (6.2).

L
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An example '

As an luuctntion, we consider the parallel implementation of Jacobi’s method with
I¢ procossos For simplicity, we assume that n is a multiple of k, and we set g = n/k.

To avoid an overhead in the selection of the components to be updated at each
i step of the iteration, each process is assigned to the evaluation of a fixed subset of the
components. In particular, when all components are equally as hard to compute, and
when all processors are equally as fast, it is natural to decompose the set of components
‘ into subsets of equal sizes, and, for example, to assign the first process to the evaluation
;of the first g components, the second process to the evaluation of the next q components,
_and so forth. Corresponding to this decomposition, a parallel implementation of Jacobi’s
;mcthod with k processes can be represented by the asynchronous iteration (F,x(0),2,4),
where # and 4 are defined by:

Jj-(a'. |1+(j~-tmodklgsisq+(j-Imodklg} for j=1,2, ..,

8,(j) = |(j-3)/k)q tor j=1,2,. and i=l, ., 0.
The two asynchronous iterations we introduced in section 2.2 to represent Jacobi’s

method correspond to the particular cases k = ! and k = n.

‘ Itis ntsy to check that p and tp are given by I and k, respectively, for p = 0, {, ....
' This shows that p " Li/k] and therefore
R(k) 2 -(ogp(A))/k .
!wa, if ¢ j measures the number of evaluations of F required to compute the first j
' iterates, using equation (6.1), we have c; = j/k. This gives for the efficiency:
E k) 2 ~Qogp(A)) . (6.3)
{ For all values of k, we obtain the same bound for the etficiency. In particular, when F is
' the linear operator defined by F(x) = Ax + b, where A is a non-negative nxn matrix with
spectral radius less than unity, then A can be chosen as a contracting matrix for F and
the bound (6.3) is known to be sharp.

Since the asynchronous iteration we are considering corresponds to a parallel
implementation of Jacobi’s method, instead of measuring the cost by the number of
evaluations of F, it is more natural to use the average time to perform the evaluations as
a measure of the cost. Let the time unit be the average time to perform (sequentially)
one evaluation of F. Then, it pksj<(psldk, we have ¢, sc;<copuq) and
Cpk * p(A,/k) The expression A,/k corresponds to the time for the k processes to

-18 -
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execute in parallel their computations and to synchronize their executions. The factor Ay
is the penalty factor mentioned in [3]); it measures the overhead due to the fluctuations in
the computing times of the k processes, and can be evaluated if we know, for example,
the distribution function for the time to evaluate F. In particular, we have A = 1 and, for
k22 ) 21 with the equality only when it always tske the same constant time to
evaluate F (i. e, there are no fluctuations in the computing time). This cost measure
yields the following bound for the efficiency:
E k) 2 -[k/Ai Jogp(A) .

Again, these bounds are sharp for the linear operator we mentioned above, and the ratio
E (k)/E(1) = k/)) measures the speed-up achieved by using a parallel implementation
with k processes. We would expect the implementation with k processes to be k times as
efficient as the sequential implementation (with k = 1), but this is not so because of the
overhead introduced by synchronizing the k processes and measured by the penalty
factor A,.

6.2 - Additional assumpftions

In the preceding example, we have been able to carry out the analysis for Jacobi’s
method (and even obtain sharp bounds on the efficiency) because the representation in
terms of asynchronous iterations is known explicitly and follows a very regular pattern.

This is not, however, generally so. For example, in a parallel implementation with
: several processes using no synchronization (as presented in section 2.1), the sequences
.4 and # (and, therefore, the sequences r, and typ P = 0, 1, ..) are not known directly but

are only defined implicitly by the processes in the course of their executions.

? Below, we present alternate bounds for R and £ under conditions often satisfied in
usual implementations of asynchronous iterations. We assume that we know bounds on o
and tp, and we restrict the definition of the class of asynchronous iterative methods by
replacing conditions (b) and (c) of definition 1 with the following:

(b’) There exists a positive integer r such that, for j =1, 2, .. and i = 4, .., Ny
s,(j) 2 j-n,
(c’) theye exists a non-negative integer t such that, for j=1,2, .,

! Jj vu..u Jjoc = {1, .., a)

' Condition (b’) corresponds exactly to the restriction stated by Chazan and Miranker in the
definition of the chaotic relaxation scheme [1]. We have criticized the condition for the

i
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lgonenlity of the definition, and we have shown that this condition was not necessary to
' ensure the convergence of asynchronous iterations. In practical spplications, however,
this condition is often satisfied, in particular, when the computations of all components
have the same complexity (which is the case with a linear operator). Condition ) is
also satisfied for most of the usual implementations of asynchronous iterations, since it is
natural that (1) a process evaluates a component by using the most recently updated
values of all components; and (2) two processes never evaluate the same component at
the same time; in this case it follows directly that, by teking r = t+!, conditions (b’) and

{c’) are equivalent.

Under the additional conditions (b’) and (¢’), we clearly have rpsr and tp st for
p=0,1,., and, therefore, p j % Li/trst)}. From the bounds stated in theorem 3, we

immediately obtain the following.

Corollary:
Let F satisfy the condition of theorem 1, and let A be a contracting matrix for

F. If the asynchronous iteration (F,x(0),2,4) satisfies the additional conditions (b")
and (¢), then it converges to the fixed point of F with a rate of convergence

R 2 - [1/(ret)) logp(A) ,
and an efficiency

E 2 - (lim T Jlretke j] logp(A),
where the sequence p; is defined from 7 and .4 by equation (6.2).

7 = Experimental resulls

Several asynchronous iterations have been experimented with on C.mmp, the
Carnegie-Mellon multiprocessor (8], and the actual measurements are presented in the
next section. The different asynchronous iterative methods are described below.

7.1 = Asynchronous iterations experimented with

All asynchronous iterations we have experimented with consist of the paratlel
execution of k processes. As we did with the parallel implementation of Jacobi’s method,
we assign to each of the processes the evaluation of a fixed subset of the components.
Each process computes cyclically new values for the components in its subset, and the
methods only ditfer by the choices of the values used in the evaluations.

! ; -20 -
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Asynchronous Jacobi’s method (AJ): For the evaluations of all components, a process

uses only values of the components known at the beginning of a cycle, and the
process releases all new values at the end of each cycle.

; Asynchronous Gauss-Seidel’s method (AGS): Same as the AJ method except that the
process uses new values of the components in its subset as soon as they are
known for further evaluations in the same cycle. Again, it releases the new
values (for the other processes) at the end of its cycle.

| Purely Asynchronous method (PA): A process computes the new values of each

component by using the most recent values of all components and releases each

new value immediately after its evaluation.

'
The PA method is certainly the easiest method to implement, and, as far as space is

concerned, is clearly the most efficient one, whereas the AJ method is the worst one,
is'mce it requires from each process not only a complete duplication of all components (as
i of the beginning of its cycle) but still another copy of the components in its own subset.
This can hardly be justified but experimental results give useful comparisons between
ithe AJ method and the actual Jacobi’s method (also between the AGS and Gauss-Seidel’s
E methods).

In addition, both the AJ and AGS methods also require the need for a critical
section in order to read all components at the beginning of a cycle and to update the
values at the end of a cycle, whereas no critical section is needed with the PA method.
However, C.mmp has the drawback that no indivisible instructions exist to read or write
floating point numbers (implemented on two consecutive words of memory), therefore, if
we are to implement the PA method on C.mmp, only the first 8 bits of the mantissa can be
considered significant, and the admissible error in the termination criterion has to be

chosen accordingly.

7.2 - Results

The three methods just described, as well as Jacobi’s method, have been
implemented on C.mmp to solve the Dirichlet problem for Laplace’s equation on a
rectangular domain of R2, Using the method of finite differences, an approximate
solution to this problem can be found by solving a linear system of equations. In the
experiments reported here, a regular grid has been chosen with 2/x24 interior points,

s T




e ke R

=

resulting in a linear system of size n = 504. This system can be represented in the form
2 = F(x) = Ax + b, where the vector b is obtained from the boundary conditions, and the
matrix A is a (very sparse) non-negative matrix with spectral radius p(A) = 0.991. Since
p(lAl) = p(A) < 1, this shows that A is a contracting matrix for the operator F, and,
therefore, that the result of theorem 1 can be applied to F to ensure the convergence of

each iterative method.

At the time the measurements have been taken, the configuration of C.mmp included
six processors, and all iterative methods have been run with a number of processes
k=1,2 3,4 and6. Each of the results reported here is the average of three
measurements, but, since C.mmp was used in stand-alone during the experiments, very
little difference was noted from one run to the next.

In table 1, we report for the four methods the average number of vector

i evaluations required to reduce (asymptotically) the error vector by a factor of 10: this
| corresponds to the cost measure 1/Eq And, in table 2, we report the average time

I(expressed in seconds) required to achieve this reduction: this corresponds to the cost

' mesure [ /Et.

The bounds obtained from the results of the previous sections are mentioned in
' parentheses along with the measurements. The parameters in these bounds have been
' evaluated either directly (e. g., p(A) & 0.991), or through measurements by tracing the
executions of the processes. In particular, for the AJ, AGS and PA methods, the bounds r
and t, defined in section 6.2, have been determined by observing the sequencing of the
tasks performed by the different processes. Similarly, the penalty factor in Jacobi’s
| method and the overhead due to the critical section in the AJ and AGS methods have been

{
| obtained by direct measurements: they are presented in tables 3 and 4.

-22-

Table 1 - Number of evaluations required to divide the error by a factor of 10

' Jacobi Al AGS PA

k=1l |254 (254) |254 (258 |127 (254) | 127 (25@)

: -2 | 254 (250) | 266 (888) | 142 (888) | 127 (762)

| -3 | 254 (254) [267 8a6) |19 (846) | 127 (762)

l ned |254 250) |273 825) | 166 (825) | 129 (762)

| k=6 |254 (2500 |285 (204 | 196 (808 | 128 (762)
|
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i Jacobi AJ AGS PA

, k=1 |337 (337) |337 (337) | 168 (337) | 168 (337)

- k=2 |241 (241) |211 (705) [ 113 (705) | 84 (506)

| k=3 | 178 (178) | 149 (a71) | 83 @a71) | 56 (337)
k=4 | 153 (153) | 123 (372) | 75 372) | 43 (253)
k=6 | 131 (131) | 102 (289) | 70 (289) | 28 (169)

Table 2 - Time required to divide the error by a factor of 10
3 k=1 | k=2 | k=3 | k=4 | k=6

A 1 143 | 159 | 182 | 234
% 0 299 | 371 | 451 | 573

Table 3 - Penalty factor with Jacobi’s method
and percentage of the wasted time

k=1 k=2 k=3 k=4 k=6

Ay 1 120 { 126 | 135 | 162
% 0 166 | 208 | 260 | 382

Table 4 - Critical section overhead cost with the AJ and AGS methods
and percentage of the wasted time

e o i S e e et

These results must only be considered to illustrate the behavior of asynchronous
iterations, since, in particular, the two cost measures reported in tables 1 and 2 strongly
| depend on both the problem (i. e., the matrix A) and the multiprocessor system. Yet, they

SRR S R B

show a clear advantage of asynchronous methods over synchronized methods.

We note, for example, from table 3 that, with Jacobi’s method, when k = 6
processes are used, the penalty factor is as big as 16 = 2.34. This means that about 57
percent of the time is spent by a process waiting for the other processes to tinish their

icomputat'\om. This limits the possible speed-up to 2.6 rather than 6.

i . ; : We also note that the use of critical sections, too, should be avoided, since, with
, the AJ or AGS methods, when 6 processes are used, about 38 percent of the time is spent
Iwauln; for entering the critical section, again limiting the possible speed-up to 3.7
i rather than 6.




E | ; The measurements for the PA method, on the other hand, indicate that we achieve
2 an almost full speed-up with this method (at least with a small number of processes). An

obkus reason for this speed-up is the total absence of any form of synchronization;
. another reason, specific to the problem we have experimented with and indicated by the

s e e A e e

_results of table 1, is the sparsity of the matrix A.

The bounds derived in section 6 have been obtained in a very general case. Yet
tables 1 and 2 show that they are always within a factor between 3 and 6 of the actual
gmeasurements (except for Jacobi’s method where they are sherp). In addition, we
:i certainly could obtain much sharper bounds by carrying out the analysis for the specific
: problem we have éxperimented with (for example, by taking into account the sparsity of
the matrix). In particular, a specific analysis for the PA method can easily explain the

fact that 1/E, is almost not influenced by the number of processes (see table 1).

‘ i 8 - Asynchronous iterations with super-linear convergence

As we already noticed, the bounds established in section 6 are certainly not
adequate to measure the complexity of iterations with super-linear convergence. In this
section, we use as an example the iterative method we have mentioned at the beginning

of section 5 to show how an analysis of the complexity can be done for this case.

To study the convergence of a sequence z(j), j = 0, 1, .., toward its limit ¥, we now

E use the following usual measures of complexity. The order of convergence is defined as

p = limint i, [Cloglz(-£)/1],
and, as before, if ¢ j is the cost assogi.ated with the evaluations of the first j iterates,
x(1), .., z(j), we define the efficiency of the sequence by:

E = liminf ;. [(og-loglz(j)-El)/e;],
Again, we note that, if the average cost per step ¢ J-/j tends to some finite limit ¢ when j
tends to infinity, the efficiency is simply given by E = (logp)/c. In the remainder of the

section, we assume that the limit ¢ exists.

s 0 . N 0

In order to find the simple root ¢ of an operator G from R" into itself, we use the
Asynchronous Newton’s method, AN, as implemented by the two processes described at the
beginning of section5. Let r;, i =1, 2, .., be the number of iterates evaluated by the
first process, P1, during the i-th evaluation of the derivative G’ by the second process,
P2. Let jgmwOand jmrp+..¢ryfori=1,2., then 2(j;), i = 0, 1, .., is the iterate used

i {
’»
k|
& |
bt
=
!
B 1
|
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by P2 for the (i+1)-st evaluation of the derivative. Starting with the two initial values
%(0) and G'(x(0)), the AN method generates with the two processes P! and P2 the

~sequence of iterates z(j), j = 1, 2, .., defined by
z(j*1) = 2(j) - [G’(s(j‘-_,))]"c(x(j)) , for imf,2,. and j;<js%jig. (81)

' The following theorem gives the measures of complexity for this sequence if we
' know some bounds on the sequence r;, i = 1, 2, ...

IiThoorom 4:

i Let the initial approximation #(0) be close enough to the root £, that is

2(0) €D, ={z|llz-El<e},

and let the derivative G’ satisfy some Lipchitz condition on D,
G (x)-C*(y)l| < Milz-yll , Y2, y€D, .

If € satisfies the condition
MIC ) e < 2/5,

and if there exist some positive integers p and q such that
psrisq, for i=1{,2,..,

i then the order of convergence, p, and the efficiency, E, of the sequence defined by

equation (8.1) satisfy:

p2 A, 8.2)
! and !
E 2 (log),)/(ge) , (8.3) g
where A, is the largest root of the equation 22 - 22 - (p-1)z - 1 = 0 (for which we

P
: can check easily that 0.4 + vp < AP <05+Vp,p=12.)

' Praof:

‘ The proof is easy but technical, and below we only give an outline for this proof.

Let o = MHG’(:)"II. and let ¢ = 30:/[2(1-xe)} From the choice of ¢, we first note
that, starting with 2(0) € D, the sequence l=(i)-gll, j = 0, 1, .., is strictly decreasing and
satisfies:

N2 8N < ellztiza)-Elll=Gg-Ell, for i=2,3, ..,

and
=i+ 180 < cllzlji_ g )-Elillz(i)-80 , for i =2, 3. ond ji<j<jiug =izt

By substitution, it follows that, for i = 2, 3, ..,
/ 7 ri-1 :
Wiz g )51 S © NaCigog)-E0 S iy p)-EMmCig)-EN o

and, if we set u; = ~logellz(j;)>-ll, we obtain:
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Wisyt > u; ¢ (r‘--l)u‘-_, + Uio2» for i = P - s
Therefore, by using the lower bound on r;, we deduce that

Uiag 2 U+ (Pt g ¢u;n, for i=2,3, ... ;

%: This shows that u; tends to infinity at least as fast as XP‘. Therefore, the order of
convergence, o', of the subsequence z(j;), i =0, 1, .., must verify p'2 Ap. The bounds
(8.2) and (8.3) are derived directly from this last inequality. [ |

In particular, if the cost ¢ j measures the number of evaluations of the operator G,

ji" J» and, therefore, E, 2 ﬂoglp)/q. On the other hand, if the cost

corresponds to the execution time, the efficiency will depend on the implementation

we simply have ¢

itself. For example, an implementation corresponding strictly to the generation of the

sequence described by equation (8.1) requires the use of a critical section for reading

T T MY T JEvs A PRP A

and writing, in a block, the values of the iterates and of the derivative. The use of a
critical section introduces an overhead, but, as is done with the PA method, the overhead
can be avoided if a process uses whatever values are currently available when needed.

In this case the bounds of theorem 4 still holds, and ¢ can be given the value ¢ = 1. 1

The parameters p and g, too, depend on the particular implementation of the AN
method, and, especially, on the relative speeds of the processors executing the processes
P1 and P2. In practice, if the processors are equally as fast, we expect, with small
“variations, r; to be close to n, and the values p = g = n can predict good estimates for the

. efficiency of the AN method implemented with two processes.

P A

! The AN method is easily generalizable to more than two processes. If k processes
] are available, k; might be assigned to the evaluation of the sequence of iterates, while
E,kz = k - ky are assigned to the evaluation of the derivative. The bounds of theorem 4

i still holds for this case as well, only with different values for the sequence r;, i = 1, 2, ...

(or for the bounds p and q), determined by the parallel implementations of the two

"evaluations. Further results in this direction will be reported elsewhere.

9 -~ Extensions of the resulls

- We mention below some direct extensions of the results presented in this paper

and some points subject to further developments.

E : A straighforward generalization of the results can be obtained if, instead of R", we
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rcons'tder the product P of n Banach spaces B; with norms |.|;, i = 1, .. n. In this case, if »

lis an element of P, z is determined by its components z;€ B, i=1,..n And |zl

it

' represents the non-negative vector of R" with components zlpé=1,.n

Considering only the class of linear operators, F(x) = Ax + b, we have noted that
: the notion of contracting operators coincides with the condition that o(jA|) < 1. In [1],
| Chazan and Miranker have shown that this condition is not only sufficient but also

necessary for the convergence of all chaotic iterations. This implice, in particular, that

ot iR ST s e T

all asynchronous iterations corresponding to a linear operator F are convergent if and
only if F is a contracting operator. When we also consider non-linear operators,
however, the proof given b;/ Chazan and Miranker does not apply any more, and it would
be of interest to obtain conditions on the class of operators for which all asynchronous
iterations are guaranteed to converge. Similar conditions for the convergence of a more
restricted class of iterations would also be of interest, in particular, for the subclass of
asynchronous iterative methods corresponding to the additional assumptions introduced

in section 6.1.

The bounds we have obtained to estimate the rate of convergence of asynchronous

iterations have been derived by considering the worst possible case, and, compared to

actual measurements, these bounds happen to be very conservative. It would certainly
be very useful to obtain bounds (or estimates) corresponding to the average behavior of § ]
asynchronous iterations, for example, given the probability distributions of the two k
sequences J and 4, or, more generally, given the distribution functions for the time it

takes the different processes to evaluvate the components.

We have already mentioned the possibity to introduce a relaxation factor in
,’ asynchronous iterations, and, for contracting operators, we have derived a possible range
that guarantees the convergence of all asynchronous iterations. Nothing is known,
' however, about the optimal choice of the relaxation factor, for example, given directly
] / the asynchronous iteration through 2 and 4, or, again, given the distribution functions for

the evaluation times.

G it
ansde i,

s

10 -~ Concluding remarks

In the implementation of most parallel algorithms, synchronization seems to be
required to assure the communication between the processes, and to guarantee their

-27 -




s s e el

AR

IR AT b e & i e g LR

PRT———

correct executions. However, the main drawback with synchronization is that it degrades

_considerably the performance of the algorithms because it is very time consuming. The
.class of asynchronous iterative methods avoids this drawback. It includes iterations
‘corresponding to a parallel implementation in which the cooperating processes have a
! minimum of intercommunication and do not make any use of synchronization. The Purely
. Asynchronous method described in section 7.1 is a typical example of an asynchronous
iterative method.

In [1]}, Chazan and Miranker introduced chaotic relaxation schemes requiring e
'.cond'ttlon which can only be satisfied by using repeated checking and some form of
synchronization at each step of the iteration. Asynchronous iterative methods do not
require this condition and are more general than chaotic relaxation schemes.
: Asynchronou’s iterations further generalize to asynchronous iterations with memory which

allow different values of the same variable to be used within the same computation.

| Using the notions of contracting operators and of m-contracting operators,
|

} theorem 1 and theorem 2 state sufficient conditions to guarantee the convergence of any
i asynchronous iterations and asynchronous iterations with memory. These conditions are

: satisfied for a large class of operators.

In the second part of the paper, asynchronous iterations are evaluated from a
computational point of view, then the results of a series of actual measurements
(obtained by running asynchronous iterations on a multiprocessor) are presented. These

results fully justify the use of asynchronous iterative methods.

General bounds on the efficiency of asynchronous iterations are first derived
directly from the proof of the convergence theorem. Although these bounds are sharp for
a parallel implementation of Jacobi’s method, they are of little applicability since they
require to know a priori the exact specification of each step of the iteration. Alternate
bounds are then derived under additional conditions v)hich are usually satisfied in
practical applications. These bounds are consistent with actual measurements; tor the
experiments we have run, they are always within a factor of 6 of the measurements. In
addition, it is our feeling that these bounds can be largely improved if we take into
account specific characteristics of the problem baing solved, therefore leading to a better
understanding of asynchronous iterations. In section 8, for example, we have made a first
step in this direction, and we have presented an analysis for the Asynchronous Newton's

method.
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A series of experiments has been conducted on C.mmp, a multiprocessor system
(with 6 processors at the time the experiments have been run), and several asynchronous
iterative methods have been implemented to solve a large linear system of equations.
They range from Jacobi’s method, requiring a full synchronization of all the processes at
each step of the iteration, to the PA method, which requires no synchronization at all. In
between, the AJ and AGS methods are derived from the ususl Jacobi’s and Gauss-Seidel’s

methods, and they require the use of a critical section.

The experimental results show a considerable advantage for the iterative method
with no synchronization at all. For a number of processes up to the number of
processors available on C.mmp, the PA method exhibits full parallelism and has an
optimal speed-up compared to Gauss-Seidel’'s method, the best sequential method
experimented with. The AJ and AGS methods have a very similar behavior, and when 6
| Processes are used the overhead caused by the critical section implies that 38 percent of
| the time a process is waiting for entering the critical section. As is intuitively expected,
EJacobi’s method has the worst behavior of all the methods considered, and, with 6
!processes, the overhead, due to the synchronization of all the processes at each step of

3tho iteration, is about 57 percent (i. e, more than half the time a process is waiting for

' the other processes to finish their computations).

On the basis of these experimental results, and for the problem we have
' considered, there does not seem to be any alternatives: the PA method is obviously the
.mOst efficient one. In addition, another advantage of the PA method is that it is the

easiest one to implement, and, spacewise, it is also the most efficient one.

Finally, another possibility, which has only been outlined in the paper, is the
!introduct'ton of a relaxation factor. Based only on a few experimental results (not
reported here), it is our belief that we can expect an tmpr'ovomont of the Purely
A:ynchronou: Over-Relaxation method over the PA method similar to the improvement of
the SOR method over the Gauss-Seidel’s method, if we choose the relaxation factor in an
optimal way. The optimal choice of the relaxation factor depends not only on the system
' being solved, but also on the probability distributions of the various execution times by
' the different processes.
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